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Abstract Assimilation of satellite radiances has been proven to have positive impacts on the forecast
skill, especially for regions with sparse conventional observations. Localization is an essential component to
effectively assimilate satellite radiances in ensemble Kalman filters with affordable ensemble sizes. However,
localizing the impact of radiance observations is not straightforward, since their location and separation
from grid point model variables are not well defined. A global group filter (GGF) is applied here to provide a
theoretical estimate of vertical localization functions for radiance observations being assimilated for global
numerical weather prediction. As an extension of the hierarchical ensemble filter, the GGF uses groups of
climatological ensembles to provide an estimated localization function that reduces the erroneous
increments due to ensemble correlation sampling error. Results from an idealized simulation with known
background error covariances show that the GGF localization function is superior to the optimal Gaspari
and Cohn (GC) localization function. When the GGF is applied to the AMSU-A radiances, it can provide
different localization functions for different channels, which indicates the complexity and large
computational cost of tuning the localization scales for radiance observations. The GC, GGF, and fitted GGF
(FGGF) localization functions are compared using experiments with the NCEP GFS and the NOAA
operational EnKF. Verifications relative to the conventional observations, AMSU-A radiances, and the
ECMWF analyses show that the GGF and FGGF have smaller errors than GC except in the tropics, and the
advantages of the GGF and FGGF persist through 120 h forecast lead time.

1. Introduction

As a Monte Carlo approximation to the Kalman filter [Kalman, 1960], the ensemble Kalman filter (EnKF)
[Evensen, 1994; Burgers et al., 1998] uses an ensemble of forecasts to estimate the background error cova-
riances and then updates the state variables with observation information and assumed observation errors.
The EnKF has been widely used for global [e.g., Whitaker et al., 2008; Buehner et al., 2010a, 2010b; Houte-
kamer et al., 2014] and regional [e.g., Snyder and Zhang, 2003; Tong and Xue, 2005; Aksoy et al., 2009] data
assimilation systems, with assimilation of conventional observations, radar and satellite observations, and so
on. For regions with sparse conventional observations, satellite radiances can have large positive impacts
on the forecast skill [e.g., Derber and Wu, 1998; Le Marshall et al., 2006; McNally et al., 2006; McCarty et al.,
2009; Collard and McNally, 2009], since the widely available satellite radiances provide important informa-
tion about temperature, wind, and moisture.

When the EnKF is applied in high-dimensional geophysical applications, affordable ensemble sizes are often
order of 100, much smaller than the number of state variables. The EnKF is subject to sampling error that can
lead to degraded analyses and filter divergence. To combat sampling error, strategies like covariance inflation
[e.g., Anderson and Anderson, 1999; Whitaker et al., 2008; Anderson, 2009] and localization [e.g., Houtekamer
and Mitchell, 2001; Hamill et al., 2001] have been developed. Covariance localization limits the impact of obser-
vations on remote state variables to reduce detrimental effects from spurious correlations. However, covari-
ance localization for satellite radiances is not straightforward because the concepts of location and vertical
separation for satellite radiances (nonlocal observations) are not well defined. Campbell et al. [2010] suggested
that localizing the impact of radiance observations in model space was more accurate than localizing in obser-
vation space. But Lei and Whitaker [2015] documented situations where the opposite is true.
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To apply localization for radiance observations, Houtekamer et al. [2005] and Houtekamer and Mitchell [2005]
treated the Advanced Microwave Sounding Unit-A (AMSU-A) radiance observations as local observations
whose vertical locations were given by the level with maximum weighting function and applied a Gaspari
and Cohn [1999] (GC) localization function. To better extract information from the radiances, Miyoshi and
Sato [2007] and Miyoshi et al. [2010] used the normalized sensitivity function as a vertical localization func-
tion for the radiances from different satellite platforms and found positive impacts. Instead of assigning ver-
tical locations for radiance observations, the radiance observations that are strongly correlated to a model
grid point could be used to update the model state [Fertig et al., 2007]. Otkin [2012] studied the impact of
horizontal localization scale on the assimilation of infrared brightness temperature observations without
vertical localization applied since the brightness temperature is sensitive to broad layers of the atmosphere.
Given this diversity of localization approaches, theoretical studies for vertical localization of radiance obser-
vations are needed.

Among the candidate methods that can provide theoretical estimates for the localization functions of radi-
ances, one is the hierarchical ensemble filter introduced by Anderson [2007], and another is the empirical
localization function proposed by Anderson and Lei [2013]. The hierarchical filter utilizes a group of ensem-
bles that run simultaneously and obtains a sample of the regression coefficient between an observation
and a state variable. A localization value is then computed based on the sample of the regression coefficient
aiming to minimize the sampling error. Anderson [2007, Figure 12] presented the estimated localization
function for an integral observation (average of 15-point observations). The estimated localization function
is flat and has value less than 1 around the observation ‘‘location’’ and gradually decreases to 0 with increas-
ing separation. Unlike the hierarchical filter that uses a group of ensembles simultaneously, the empirical
localization often uses the output of an ensemble observing system simulation experiment (OSSE) and
assumes the true state is known. For a subset of pairs of observations and state variables, a localization
value is computed by minimizing the root-mean-square (RMS) difference between the true value and the
posterior ensemble mean. The estimated empirical localization function for an integral observation (average
of 17-point observations) shown in Anderson and Lei [2013, Figure 9] is very similar to that of Anderson
[2007, Figure 12].

Lei and Anderson [2014a] compared the empirical localization function and an extension of the hierarchical
ensemble filter called the global group filter (GGF). The GGF uses a group of offline ensembles to estimate
the sampling error, and it computes a localization value that minimizes the sampling errors for all pairs of
observations and state variables in a subset. Although in some situations the GGF may underestimate the
localization value compared to the empirical localization function, it does not require knowledge of the true
state (unknown for real applications) and does not explicitly need the separations between observations
and state variables. Thus, a GGF that is based on climatological ensemble perturbations (details in section 2)
is used to estimate the vertical localization for radiance observations in this study. The estimated vertical
localization function from the GGF can provide guidance for localizing radiance observations, since it is
designed to minimize the sampling error of an ensemble assimilation system.

This article is structured as follows. In section 2, the methodology of a GGF based on climatological pertur-
bations is described. To demonstrate the efficacy of this approach for radiance observations, an idealized
simulation is conducted in section 3 for two kinds of background error covariances. Section 4 conducts
experiments in the NCEP Global Forecast System (GFS). The estimated vertical localization functions from
the GGF for the AMSU-A radiances are investigated, and results with the GGF applied in subsequent assimi-
lation experiments are discussed. Section 5 discusses and summarizes the results.

2. Methodology

A procedure that is similar to the hierarchical ensemble filter proposed by Anderson [2007] and the GGF
used by Lei and Anderson [2014a] is used to construct vertical localization functions for satellite radiances.
From an existing ensemble simulation, climatological perturbations of the ensemble prior estimates of the
observations and state variables are collected. Subsets of these perturbations are then randomly selected
and used to compute the sample correlations between the observations and state variables, and the same
sample correlations can be computed between observations and observations. By minimizing the sampling
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error of the estimated correlations, a confidence factor, i.e., the localization value, is computed following Lei
and Anderson [2014a].

Given an ensemble simulation experiment, define Y as the set of all ensemble prior estimates of the obser-
vations that were assimilated in the simulation. Let yl;n be an element of Y, l 2 {1,. . ., L} and n 2 {1,. . ., N},
where L is the total number of observations and N is the ensemble size. Define DY as the set of all perturba-
tions of the ensemble prior estimates of the observations. An element Dyl;n of DY is given by Dyl;n5yl;n2yl ,
where yl denotes the ensemble mean of the lth observation.

Define X as the set of state variables that are interpolated to the horizontal locations of observations. An
element of X, xk

l;n, k 2 {1,. . ., K}, where K is the number of model vertical levels, has the same horizontal loca-
tion as yl . Define DX as the set of all perturbations of ensemble state variables in X. An element of DX is
Dxk

l;n5xk
l;n2xk

l , where the overbar denotes the ensemble mean.

Since the vertical location of radiance observations and the vertical separations between radiances and
state variables are not well defined, the localization function can be defined as a function of vertical coordi-
nate instead of vertical separation. Here pressure is used as the vertical coordinate. Define DXs as a subset
of DX, which contains perturbations of state variables whose pressure locations are between (s 2 1)* Dp
and s*Dp, where Dp is pressure interval. The set of all pairs (Dy, Dx), where Dy 2 DY, and Dx 2 DXs comprise
the sth subset and is used to compute the localization value for the subset. Using N random samples
from subset s, an estimate of the climatological correlation between y and x can be computed by
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s . Anderson [2007] used a group of ensemble filters (with a group size G) to obtain an esti-

mate of the distribution of the regression coefficient between one observation and a state variable. Lei and
Anderson [2014a] used an offline ensemble simulation and collected regression coefficients for all samples
in a subset (with a sample size M). Here repeating the process of computing the climatological correlation

M3G times, a set of estimated climatological sample correlations is obtained, which is denoted by rg
m,

g 2 {1,. . ., G} and m 2 {1,. . ., M}.

The localization value a is defined to minimize the sampling error of the estimated climatological sample
correlations. Here sample correlation is used instead of sample regression coefficient that is used by Anderson
[2007] and Lei and Anderson [2014a], because DX and DY contain all perturbations from one ensemble simula-
tion and the estimated sample regression coefficients are not bounded. Anderson [2012] demonstrated that
sampling error in the estimated regression coefficients mainly comes from that in the estimated correlations
for all except very small ensemble sizes. Thus, a localization value based on sample correlations is expected to
be similar to that based on sample regression coefficients. Following Lei and Anderson [2014a, equation (2)], a
can be computed by
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which minimizes the RMS difference between the estimated correlations for all the pairs in the subset. Fol-
lowing this procedure to compute a localization value a for each subset s, a localization that is a function of
the state variable pressure can be obtained.

3. Idealized Simulation

The GGF is first examined in an idealized simulation where the true error covariance is known. The idealized
1-D model used by Lei and Whitaker [2015] to compare the differences between model space and
observation-space localization for radiance observations is adopted here. The true error covariance is either
Gaussian or the second derivative of a Gaussian [Lei and Whitaker, 2015]. Unlike the Gaussian error covari-
ance, the second derivative of a Gaussian has some negative correlations.

Journal of Advances in Modeling Earth Systems 10.1002/2016MS000627

LEI ET AL. LOCALIZING WITH GLOBAL GROUP FILTER 721



The 1-D model has 101 equally
distributed vertical levels of –ln
(p/ps) between ps and 10 hPa,
where ps is 1000 hPa. The true
state values are assumed to be 0
for all levels, and the e-folding
scale for the true error covarian-
ces is 0.5. The sample error covar-
iance is obtained by randomly
sampling the true error covari-
ance with 40 ensemble mem-
bers. The forward operator H is a
vertical average with Gaussian
kernel with an e-folding scale 1.0.
A single observation that has H
peaking at level 25 with pressure
331 hPa is generated by adding
random draws from a normal dis-
tribution N(0, 0.1) to the true
observation value.

The GC localization function is
used as a reference. Its localization
scale at which observation impact
decreases to 0 varies from 0 to
10.0. There are 10,000 trials for
each localization scale. The corre-
lations from the 10,000 trials are
divided into four groups (G 5 4
and M 5 10,000/4) to construct
the GGF localization function
using equation (1) for each vertical
level. The GGF localization func-
tion is then applied for 10,000 tri-
als. For each localization scale, the
sample Kalman gain is computed,
and an analysis is produced. The
root-mean-square error (RMSE) of
the analysis relative to the true
state is calculated and averaged
over the 10,000 trials.

Figure 1 shows the RMSE with
varying localization scales when

the true error covariances are either Gaussian or the second derivative of a Gaussian. For the two kinds of
true error covariances, there is an optimal GC localization scale that gives the smallest RMSE. The GGF local-
ization function produces smaller RMSE than the optimal GC localization functions in both cases, consistent
with Anderson and Lei [2013] and Anderson [2016].

Figure 2 displays the GGF and optimal GC localization functions for the two kinds of true error covariances.
When the true error covariance is Gaussian, the mean sample correlation is less than one at the assigned
observation location (level 25), and monotonically decreases with increasing separations. Consistent with
the mean sample correlation, the GGF has value slightly less than one at the assigned observation location
and gradually decreases to 0 with separation. The optimal GC localization function has value 1.0 at the
assigned observation location, and has values smaller than the GGF when separations are smaller than 1.0
but broader tails than the GGF.

Figure 1. Average analysis RMSE with 40 members and varying localization scales when
the true covariance is (a) Gaussian and (b) the second derivative of a Gaussian. The green
line presents the RMSE using the estimated Kalman gain without localization, and the blue
line displays the RMSE using the estimated Kalman gain with GGF localization function,
while the black line denotes the RMSE using the true Kalman gain.
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When the true error covariance
is the second derivative of a
Gaussian, the mean sample cor-
relation is less than one around
the assigned observation loca-
tion, and it contains negative
correlations by design. The GGF
is consistent with the absolute
value of the mean sample corre-
lations. The GGF has values less
than one at the assigned obser-
vation location, and it decreases
with separation with a value of
0 when the mean sample corre-
lation is approximately 0. When
the sample correlations become
negative, the GGF increases and
has a maximal value of 0.6 when
the mean sample correlation is
minimum. The optimal GC local-
ization function has narrower
localization scale than the GGF,
but it has larger values than the
GGF around the assigned obser-
vation locations.

Figure 3 shows the maximum
RMSE reduction (minimum anal-
ysis RMSE that can be obtained
with optimal localization param-
eters divided by the forecast
RMSE) from GC and GGF local-
ization functions with varying
ensemble size. For all ensemble
sizes, the differences of the maxi-
mum RMSE reduction between
GC and GGF localizations are
statistically significant at the 95%
confidence level using a paired
sample t test. With varying ensem-

ble size, previous results (Figure 1) hold: GGF localization produces larger error reduction than the optimal GC local-
ization for the two kinds of true error covariances. The differences between GC and GGF localizations generally
become smaller with increasing ensemble size.

This idealized simulation demonstrates that the GGF can provide appropriate localization functions for non-
local observations, especially when there are negative error covariances, and these estimated localization
functions can outperform the best GC localization function. The next step is to construct the GGF localiza-
tion function for real radiance observations and apply the GGF in subsequent assimilation experiments.

4. NCEP GFS Simulation

The GGF is used to construct vertical localization functions for the AMSU-A radiances, since the assimilation
of the AMSU-A radiances has significant positive impact on global forecast skills [e.g., Zapotocny et al., 2008;
Ota et al., 2013]. Experiments that assimilate only AMSU-A radiances with different localization functions
will be described in section 4.1. The vertical GGFs that are constructed from the output of the experiment

Figure 2. Mean sample correlations (black), optimal GC localization function (blue), and
the GGF localization function (red) for (a) Gaussian and (b) the second derivative of a Gaus-
sian true covariances.
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using the GC localization func-
tion and the fitted GGF (FGGF)
that uses GC function to fit the
GGFs will be presented in section
4.2. Sections 4.3 and 4.4 will dis-
cuss the results using GC, GGF,
and FGGF localization functions.

4.1. Experimental Design
Three ensemble assimilation
experiments (EnKF-GC, EnKF-
GGF, and EnKF-FGGF) with 80
ensemble members are con-
ducted using the NCEP Global
Forecast System (GFS) model
with a resolution T254L64 and
model top 27 Pa. They extend
from 00UTC 1 April 2014 to
00UTC 15 April 2014. AMSU-A
radiance observations (http://
www.emc.ncep.noaa.gov/mmb/
data_processing/prepbufr.doc/
table_18.htm) that are used in
the NCEP Global Data Assimila-
tion System (GDAS) are assimi-
lated every 6 h. Channels 1–3 and
15 are sensitive to surface condi-
tions and channel 14 is sensitive
to conditions above the model
top, thus these channels are not
assimilated. The grid point statisti-
cal interpolation (GSI) [Wu et al.,
2002; Kleist et al., 2009] is used to
compute the observation forward
operator H and save the values of
Hxb for the ensemble mean and
each ensemble member sepa-
rately. The observation error var-
iance R uses the same values as
in the NCEP GDAS.

For all experiments, horizontal localization uses the GC localization function that tapers the observation
impact to 0 at 1250 km. This horizontal localization scale is empirically chosen without tuning, but we
expect general results will be hold with a different horizontal localization scale, since radiance observations
are integral observations in the vertical. For the vertical localization, experiment EnKF-GC uses the GC local-
ization function with length scale of 1.0 (unit: ln(hPa)). Vertical GGFs for each channel of the AMSU-A radi-
ance observations and state variable temperature are computed using the output of EnKF-GC. Experiment
EnKF-GGF (EnKF-FGGF) uses the vertical GGFs (FGGFs) for both state update and observation update
(details will be discussed in section 4.2). Although Hamurd et al. [2015] showed different correlations for
the AMSU-A radiances with temperature and zonal wind, the vertical GGFs between the AMSU-A radiances
and temperature are only used here to keep the simplicity, and the application of the vertical GGFs
between the radiance observations and each state variable and observation type will be explored in a
future study.

The ensemble square root filter (EnSRF) [Whitaker and Hamill, 2002; Whitaker et al., 2008] in the NOAA
operational EnKF (http://www.dtcenter.org/com-GSI/users/docs/enkf_users_guide/EnKF_UserGuide_v1.

Figure 3. The maximum analysis RMSE reduction (minimum analysis RMSE divided by the
forecast RMSE) from GC and GGF localization functions with varying ensemble size for
(a) Gaussian and (b) the second derivative of a Gaussian true covariances.
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Figure 4. Mean sample correlations (black), reference GC localization function (blue), GGF localization function (red-solid), and fitted GGF localization function (FGGF; red dashed) for the
wind channels 4–13 of the AMSU-A radiances.
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0Beta.pdf) is used to assimilate the observations. To maintain appropriate ensemble spread and avoid fil-
ter divergence, multiplicative covariance inflation that relaxes posterior ensemble spread back to prior
ensemble spread (relaxation-to-prior spread) [Whitaker and Hamill, 2012] is used with relaxation coeffi-
cient 0.85; no additive inflation is applied. During model integration, stochastic physics [Palmer et al.,
2009] are used to represent the model uncertainty.

4.2. Estimated Vertical Localization Function
The 6 h output between 00UTC 5 April 2014 and 00UTC 7 April 2014 from experiment EnKF-GC is used to
compute the vertical GGF localization function for the AMSU-A radiances. The observation priors of the
AMSU-A radiances are computed by the Community Radiative Transfer Model (CRTM) [Weng, 2007; Han
et al., 2007] for each ensemble member. The ensemble of the observation priors constitutes the set Y. The
prior ensembles of temperature profiles at the observation locations and times are interpolated from the
prior ensemble of the EnKF-GC experiment, which constitutes the set X. Here vertical separation Dp is set to
5 hPa when pressure is smaller than 50 hPa and 50 hPa otherwise. Given the set Y and X, the GGF localiza-
tion function for each channel of the AMSU-A radiances in the vertical is computed following the proce-
dures described in section 2 with G 5 16 and M 5 100,000.

The mean sample correlations and GGF localization functions for channels 4–13 are shown in Figure 4. The
correlation between the AMSU-A radiance observations from channel 4 and temperature is approximately

Figure 4. (continued)
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0.3 at 950 hPa, and it decreases with height (Figure 4a). It is negative between 300 and 30 hPa, and
approaches 0 above 30 hPa. The estimated localization function has similar shape to the absolute value of
the correlation, which is consistent with the idealized simulation in section 3. The GGF has value of approxi-
mately 0.9 at 950 hPa and initially decreases with height. However, it has a local maximum value corre-
sponding to the local minimum correlation. As a reference, a GC localization function with a length scale of
1.0 (unit: ln(hPa)) is computed for which the vertical observation ‘‘location’’ is assigned as the pressure level
of the maximum mean sample correlation. Comparing to the GC localization function, the GGF is less than
1.0 around the vertical observation ‘‘location,’’ and it has a larger length scale and broader tail.

From channel 4–13, the level with the maximum positive correlation moves upward. Away from the level
with the maximum positive correlation, the correlation decreases, and it can become negative. There are
particularly strong negative correlations for channels 7–9. The estimated localization functions have similar
shape to the absolute values of the correlation. When close to the vertical observation ‘‘location,’’ the local-
ization value has a maximum slightly less than 1.0. It decreases away from the observation ‘‘location,’’ and
reduces to 0 when the correlation becomes 0. However, the estimated localization values become signifi-
cantly positive when there are prominent negative correlations leading to an additional local maximum of
the localization function. Compared to the GC localization functions, the GGFs have value less than 1.0
around the vertical observation ‘‘location’’, and they have larger length scales. More importantly, the GGF
localization function is often bimodal, clearly non-Gaussian.

To produce a smooth localization function, the GC function is used to fit the GGF. The GC function that has the
smallest RMS difference comparing to the GGF is denoted as FGGF and displayed by the red-dashed line in
Figure 4. The localization scales of the FGGFs for each channel of the AMSU-A radiances are shown in Table 1. For
each channel, the FGGF has larger length scale than the reference GC function, which is consistent with the GGF.
The FGGF has larger localization values than the GGF around the observation ‘‘location’’ and broader length scale
than the GGF, because it tends to include the local maxima of GGF that are resulted from negative correlations.

4.3. Verification of the Estimated Vertical Localization Function
The GGF localization functions discussed in section 4.2 have different shapes from the commonly used GC
localization function, and they vary significantly among channels. Without prior information of localization
scale, tuning GC functions for each channel would be difficult and costly. The FGGFs suggest broader local-
ization length scales than 1.0 (unit: ln(hPa)) used by EnKF-GC, thus an additional experiment EnKF-GC2.4 is
conducted with a GC localization length scale 2.4 (unit: ln(hPa)) that is similar to the localization length scale
used in Hamurd et al. [2015]. In this section, the GGF and FGGF localization functions are applied in addi-
tional assimilation experiments (EnKF-GGF and EnKF-FGGF), and then compared to experiments EnKF-GC
and EnKF-GC2.4. The first 4 days of assimilation are discarded to avoid transient effects and the remaining
data between 00 UTC 5 April 2014 and 00 UTC 15 April 2014 are evaluated.

The observation-space diagnostics use the 6 h prior. The average error profiles of wind speed verified rela-
tive to the conventional observations are shown in Figure 5. The errors are averaged globally (GL), in the
Northern Hemisphere (NH; 208N–908N), the Tropics (TR; 208S–208N), and the Southern Hemisphere (SH;
908S–208S), respectively. EnKF-GGF produces smaller errors than EnKF-GC and EnKF-GC2.4 in the NH and
SH, and also GL, but it has slightly larger errors than EnKF-GC and EnKF-GC2.4 in the TR. EnKF-FGGF pro-
duces smaller errors than EnKF-GC and EnKF-GC2.4 in the NH, SH, and GL, and it produces similar errors to
EnKF-GC and EnKF-GC2.4 in the TR. Comparing to EnKF-GGF, EnKF-FGGF produces slightly smaller errors in
the NH and SH, and smaller errors in the TR. Similar results are obtained for temperature but the differences
among the experiments are smaller (not shown).

Figure 6 displays the verification of the 6 h priors relative to the AMSU-A radiance observations. All three
experiments have similar errors for channel 13 and the errors of channel 13 are much larger than for the
other channels, thus the errors of channel 13 are not shown in order to clearly show the differences among

Table 1. The Localization Length Scales of the FGGFs for Each Channel of the AMSU-A Radiance Observations

Channel 4 5 6 7 8 9 10 11 12 13

FGGF length scale
(unit: ln(hPa))

2.3 2.7 1.8 2.6 3.4 3.7 2.3 1.6 2.3 2.1
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the experiments for the other channels. In the NH and SH, EnKF-GGF and EnKF-FGGF have similar errors,
and both have smaller errors than EnKF-GC and EnKF-GC2.4, especially for channels 6–9. In the TR, EnKF-
FGGF produces very slightly smaller errors than EnKF-GGF, EnKF-GC, and EnKF-GC2.4.

The 6 h priors are also verified in model space by comparing to the ECMWF operational analyses. The fore-
casts from the experiments are converted to resolution 18 with 37 vertical levels that are distributed from
1000 to 100 hPa, and the 18 forecasts are then evaluated relative to the ECMWF 18 analyses. For each experi-
ment, the absolute error is averaged over longitude and the verification period. The differences of the aver-
aged absolute error between EnKF-GGF and EnKF-GC for temperature and wind are shown in Figure 7.
Figure 8 presents the differences between EnKF-FGGF and EnKF-GC. Cold (warm) color denotes that EnKF-
GGF or EnKF-FGGF has smaller (larger) absolute error relative to the ECMWF analyses than EnKF-GC.

Figure 5. Average error profiles of wind speed for (a) the globe, (b) the Northern Hemisphere (NH), (c) the tropics (TR), and (d) the
Southern Hemisphere (SH), which are computed from the 6 h initial forecast (prior) verified relative to the conventional observations.
The bars on bottom denote the mean value of the error.
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As shown by Figure 7a, EnKF-GGF has smaller temperature error than EnKF-GC in the NH and SH extending
from the surface to 150 hPa. It has slightly larger temperature error than EnKF-GC in the TR. Similar results
are obtained for wind speed (Figure 7b), while EnKF-GGF has smaller wind error than EnKF-GC in the midla-
titudes, especially between 700 and 200 hPa. Similar error patterns are obtained between EnKF-FGGF and
EnKF-GC (Figure 8), except that EnKF-FGGF has similar error of temperature and wind speed to EnKF-GC in
the TR. Comparing Figure 8 with Figure 7, EnKF-FGGF produces similar errors relative to the ECWMF analy-
ses to EnKF-GGF, except that EnKF-FGGF has smaller error than EnKF-GGF in the TR, which is consistent with
the observation-space diagnostics.

To examine whether the differences among the experiments persist for longer forecasts, 5 day forecasts are
initialized from each analysis during the verification period for the three experiments. Forecasts are verified
against the ECMWF analyses for 1–5 day leads, and the absolute error of each experiment is averaged glob-
ally and over the verification period. Figure 9 presents the differences of the averaged absolute error

Figure 6. Average error profiles of AMSU-A radiances for (a) the globe, (b) NH, (c) TR, and (d) SH, which are computed from the 6 h initial
forecast (prior) verified relative to the AMSU-A radiance observations. The bars on top denote the mean value of the error.
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between experiments EnKF-GGF and EnKF-GC at different forecast lead times. Negative values indicate that
EnKF-GGF has smaller error relative to the ECMWF analyses than EnKF-GC. For temperature, the negative
values extend from the surface to 50 hPa for all lead times. Similar results are obtained for wind speed with
the largest error differences around 250 hPa. The differences of the averaged absolute error between
experiments EnKF-FGGF and EnKF-GC are displayed in Figure 10. EnKF-FGGF produces smaller errors of

(a) (b) 

Figure 7. The difference of absolute error of (a) temperature and (b) wind speed between experiments EnKF-GGF and EnKF-GC. The error is computed by verifying against the ECMWF
analysis and averaged over longitude and verification period. Cold (warm) color means EnKF-GGF has smaller (larger) error relative to the ECMWF analyses than EnKF-GC.

(a) (b) 

Figure 8. Same as Figure 7, but between experiments EnKF-FGGF and EnKF-GC.
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Figure 9. Profiles of difference of absolute error for (a) temperature and (b) wind speed between experiments EnKF-GGF and EnKF-GC at different forecast lead times. The error is
computed by verifying against the ECMWF analysis and averaged globally and over the verification period. Negative values indicate that EnKF-GGF has smaller error relative to the
ECMWF analyses than EnKF-GC.

Figure 10. Same as Figure 9, but between experiments EnKF-FGGF and EnKF-GC.
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temperature and wind speed than EnKF-GC for all lead times. Comparing Figure 10 with Figure 9, EnKF-
FGGF has slightly smaller errors of temperature and wind speed than EnKF-GGF at all lead times, which is
consistent with the verification against the ECWMF analyses from the 6 h priors and also the observation-
space diagnostics.

4.4. Discussions
From the diagnostics in observation and model spaces, GGF outperforms GC, except that GGF has slightly
larger errors than GC in the TR. Lei et al. [2015] conducted regional simulations and suggested that a deeper
vertical localization was preferred for regions with precipitation than regions without precipitation, and sim-
ilar results were obtained by Montmerle and Berre [2010] and Caron and Fillion [2010]. One possible explana-
tion for GGF being slightly inferior to GC in the TR is that different vertical localization functions are needed
for regions with and without active precipitation in the TR. Thus, the vertical GGF localization functions in
the TR are computed for regions with and without precipitation separately based on the output of experi-
ment EnKF-GC, although there is no cloudy radiance assimilated in the EnKF-GC. A surface grid point whose
average precipitation rate in the past 3 h is larger than 0.00001 kg/(m2s) is defined as a location with precip-
itation. For each channel, the horizontal GGF localization functions are also computed for regions with and
without precipitation at the pressure level where the mean sample correlation maximizes [Lei et al., 2015].

Figure 11 shows the vertical and horizontal GGFs of channel 6 for regions with and without precipitation.
The vertical GGF for regions with precipitation extends broader below 350 hPa than that for regions without
precipitation. The horizontal GGF for regions with precipitation at pressure level 350 hPa has larger length
scale than that for regions without precipitation. The mean sample correlations are consistent with the GGF.
Thus regions with precipitation prefer broader localizations in both horizontal and vertical. Similar results
are obtained for the other channels except channels 10–13 that are very high and have nearly no impact
from precipitation. Although different localization functions may be preferred for regions with and without
precipitation in the TR, an experiment that implements the localization functions varying with precipitating
and nonprecipitating regions is not conducted here due to restrictions in the current GFS system configura-
tion. Testing this hypothesis will be included in future work.

Another interesting point from the verifications in section 4.3 is that the FGGF is slightly better than
the GGF. Lei and Anderson [2014a] showed that the GGF might overestimate the localization value when
the estimated regression coefficients from the group of ensembles are not fully independent. Here it is pos-
sible that the GGF overestimates the localization value, especially when the correlation is closed to 0, since
the group of ensemble perturbations is constructed from climatological ensemble perturbations. Moreover,
as a GC localization function, the FGGF is smoother than the GGF, so the FGGF may have less sampling error
projection onto the model’s spurious numerical modes like gravity waves. Also other types of functions like

Figure 11. GGF localization function (solid) and mean sample correlation (dashed) in the (a) vertical and (b) horizontal for channel 6 of the AMSU-A radiances. The horizontal GGF and
correlation are computed at the pressure level that has the maximal sample correlation.
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the spline used in Lei and Anderson [2014b] may be preferable for fitting the GGF; this will be explored in
future work.

5. Conclusions

The concepts of vertical location and separation are not well defined for nonlocal observations like satellite
radiances, so that localization for radiance observations is not straightforward. A global group filter (GGF) is
adopted here to estimate the vertical localization for radiance observations. As an extension of the hierarch-
ical ensemble filter proposed by Anderson [2007], the GGF does not require the observation locations and
separations. It uses groups of estimated regression coefficients or correlations to provide an estimate of the
localization function that minimizes the sampling error of the estimated properties from an ensemble
assimilation system.

For idealized simulations where two kinds of background error covariances are designed, the GGF localization
function is superior to the optimal GC localization function when assimilating a nonlocal observation. This
result holds for varying ensemble sizes, although the error reduction of the GGF localization function relative
to the optimal GC localization function decreases with increasing ensemble size. The GGF localization function
has similar shape to the absolute value of the mean sample correlation. Unlike the optimal GC localization
function, the GGF localization function can have local maxima when negative correlations are present.

The GGF is then used to offer a theoretical view of the vertical localization functions for the AMSU-A radian-
ces. It automatically provides different vertical localization functions for each channel of the AMSU-A radian-
ces, which also indicates the complexity and large computational cost to tune the localization scale for the
radiance observations. Consistent with the results from the idealized simulation, the estimated vertical local-
ization functions from the GGF have similar shapes to the absolute value of the mean sample correlations.
When a prominent negative correlation occurs, a local maximum of the localization is obtained.

The GGF localization functions and fitted GGF localization functions (FGGF) are compared to the GC localiza-
tion function using the NCEP GFS and the NOAA operational EnKF with assimilation of only the AMSU-A
radiances. The 6 h priors from GC, GGF, and FGGF are verified relative to the conventional observations and
the AMSU-A radiances, which show that the GGF and FGGF produce smaller errors than GC except in the
tropics. Similar results are obtained when the 6 h priors are verified against the ECMWF analyses, and the
advantages of the GGF and FGGF persist through 120 h forecast lead time.

It has been demonstrated that the GGF can provide appropriate vertical localization functions for the AMSU-A
radiance observations and improve the assimilation of the AMSU-A radiances. Based on these encouraging
results, the next step is to construct vertical localization functions for different state variables and various satel-
lite platforms using the GGF, and then incorporate the estimated GGF vertical localization functions into the
NCEP GFS and the NOAA operational EnKF. Moreover, adaptive algorithms that can provide localization func-
tions along with assimilation but with affordable computational cost will be also explored.
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